Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra. | \(g_{9}\) | \(-h_{6}+h_{5}-h_{3}+h_{1}\) | \(h_{4}+h_{3}\) | \(g_{-9}\) | \(-g_{21}+2/3g_{13}\) | \(g_{11}+2/3g_{2}\) | \(g_{19}+3/2g_{16}+g_{8}+3/2g_{7}\) | \(g_{23}+3/2g_{12}\) | \(g_{14}+3/2g_{1}\) | \(g_{25}\) | \(-g_{31}-3/2g_{24}+g_{17}\) | \(g_{26}\) | \(g_{32}\) | \(g_{27}\) | \(g_{34}+g_{30}\) | \(g_{35}\) | \(g_{33}\) | \(g_{36}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(8\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(4\psi_{1}-6\psi_{2}\) | \(0\) | \(0\) | \(-4\psi_{1}+6\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(2\omega_{1}-2\psi_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+2\psi_{1}\) | \(2\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(4\omega_{1}-6\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}+6\psi_{2}\) | \(6\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(6\omega_{1}-2\psi_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}+2\psi_{1}\) | \(6\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(8\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{4\psi_{1}-6\psi_{2}} \) → (0, 4, -6) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{-4\psi_{1}+6\psi_{2}} \) → (0, -4, 6) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}-6\psi_{2}} \) → (2, 2, -6) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}} \) → (2, -2, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}} \) → (2, 2, 0) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}+6\psi_{2}} \) → (2, -2, 6) | \(\displaystyle V_{4\omega_{1}-6\psi_{2}} \) → (4, 0, -6) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+6\psi_{2}} \) → (4, 0, 6) | \(\displaystyle V_{6\omega_{1}+2\psi_{1}-6\psi_{2}} \) → (6, 2, -6) | \(\displaystyle V_{6\omega_{1}-2\psi_{1}} \) → (6, -2, 0) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | \(\displaystyle V_{6\omega_{1}+2\psi_{1}} \) → (6, 2, 0) | \(\displaystyle V_{6\omega_{1}-2\psi_{1}+6\psi_{2}} \) → (6, -2, 6) | \(\displaystyle V_{8\omega_{1}} \) → (8, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(4\psi_{1}-6\psi_{2}\) | \(0\) | \(-4\psi_{1}+6\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-6\psi_{2}\) \(2\psi_{1}-6\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(2\omega_{1}-2\psi_{1}\) \(-2\psi_{1}\) \(-2\omega_{1}-2\psi_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+2\psi_{1}\) \(2\psi_{1}\) \(-2\omega_{1}+2\psi_{1}\) | \(2\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-2\psi_{1}+6\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(4\omega_{1}-6\psi_{2}\) \(2\omega_{1}-6\psi_{2}\) \(-6\psi_{2}\) \(-2\omega_{1}-6\psi_{2}\) \(-4\omega_{1}-6\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+6\psi_{2}\) \(2\omega_{1}+6\psi_{2}\) \(6\psi_{2}\) \(-2\omega_{1}+6\psi_{2}\) \(-4\omega_{1}+6\psi_{2}\) | \(6\omega_{1}+2\psi_{1}-6\psi_{2}\) \(4\omega_{1}+2\psi_{1}-6\psi_{2}\) \(2\omega_{1}+2\psi_{1}-6\psi_{2}\) \(2\psi_{1}-6\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-6\psi_{2}\) \(-4\omega_{1}+2\psi_{1}-6\psi_{2}\) \(-6\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(6\omega_{1}-2\psi_{1}\) \(4\omega_{1}-2\psi_{1}\) \(2\omega_{1}-2\psi_{1}\) \(-2\psi_{1}\) \(-2\omega_{1}-2\psi_{1}\) \(-4\omega_{1}-2\psi_{1}\) \(-6\omega_{1}-2\psi_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}+2\psi_{1}\) \(4\omega_{1}+2\psi_{1}\) \(2\omega_{1}+2\psi_{1}\) \(2\psi_{1}\) \(-2\omega_{1}+2\psi_{1}\) \(-4\omega_{1}+2\psi_{1}\) \(-6\omega_{1}+2\psi_{1}\) | \(6\omega_{1}-2\psi_{1}+6\psi_{2}\) \(4\omega_{1}-2\psi_{1}+6\psi_{2}\) \(2\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-2\psi_{1}+6\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-4\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-6\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{4\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{-4\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\psi_{1}-6\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-2\psi_{1}+6\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-6\psi_{2}}\oplus M_{2\omega_{1}-6\psi_{2}}\oplus M_{-6\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{2}}\oplus M_{-4\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+6\psi_{2}}\oplus M_{2\omega_{1}+6\psi_{2}}\oplus M_{6\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{2}}\oplus M_{-4\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{6\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{4\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-6\psi_{2}} \oplus M_{2\psi_{1}-6\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{-4\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{-6\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{6\omega_{1}-2\psi_{1}}\oplus M_{4\omega_{1}-2\psi_{1}}\oplus M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}} \oplus M_{-4\omega_{1}-2\psi_{1}}\oplus M_{-6\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+2\psi_{1}}\oplus M_{4\omega_{1}+2\psi_{1}}\oplus M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}} \oplus M_{-4\omega_{1}+2\psi_{1}}\oplus M_{-6\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{6\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{4\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+6\psi_{2}} \oplus M_{-2\psi_{1}+6\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-4\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-6\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{4\psi_{1}-6\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{-4\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\psi_{1}-6\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-2\psi_{1}+6\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-6\psi_{2}}\oplus M_{2\omega_{1}-6\psi_{2}}\oplus M_{-6\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{2}}\oplus M_{-4\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+6\psi_{2}}\oplus M_{2\omega_{1}+6\psi_{2}}\oplus M_{6\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{2}}\oplus M_{-4\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{6\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{4\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-6\psi_{2}} \oplus M_{2\psi_{1}-6\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{-4\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{-6\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{6\omega_{1}-2\psi_{1}}\oplus M_{4\omega_{1}-2\psi_{1}}\oplus M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}} \oplus M_{-4\omega_{1}-2\psi_{1}}\oplus M_{-6\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+2\psi_{1}}\oplus M_{4\omega_{1}+2\psi_{1}}\oplus M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}} \oplus M_{-4\omega_{1}+2\psi_{1}}\oplus M_{-6\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{6\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{4\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+6\psi_{2}} \oplus M_{-2\psi_{1}+6\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-4\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-6\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) |
2\\ |